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Abstract—A multilevel motion model-based approach to ultrasonic speckle tracking has been developed that
addresses the inherent trade-offs associated with traditional single-level block matching (SLBM) methods. The
multilevel block matching (MLBM) algorithm uses variable matching block and search window sizes in a
coarse-to-fine scheme, preserving the relative immunity to noise associated with the use of a large matching block
while preserving the motion field detail associated with the use of a small matching block. To decrease further
the sensitivity of the multilevel approach to noise, speckle decorrelation and false matches, a smooth motion
model-based block matching (SMBM) algorithm has been implemented that takes into account the spatial inertia
of soft tissue elements. The new algorithms were compared to SLBM through a series of experiments involving
manual translation of soft tissue phantoms, motion field computer simulations of rotation, compression and shear
deformation, and an experiment involving contraction of human forearm muscles. Measures of tracking
accuracy included mean squared tracking error, peak signal-to-noise ratio (PSNR) and blinded observations of
optical flow. Measures of tracking efficiency included the number of sum squared difference calculations and the
computation time. In the phantom translation experiments, the SMBM algorithm successfully matched the
accuracy of SLBM using both large and small matching blocks while significantly reducing the number of
computations and computation time when a large matching block was used. For the computer simulations,
SMBM yielded better tracking accuracies and spatial resolution when compared with SLBM using a large
matching block. For the muscle experiment, SMBM outperformed SLBM both in terms of PSNR and observa-
tions of optical flow. We believe that the smooth motion model-based MLBM approach represents a meaningful
development in ultrasonic soft tissue motion measurement. © 1998 World Federation for Ultrasound in
Medicine & Biology.

Key Words: Speckle tracking, Motion estimation, Acoustics, Ultrasonics, Elasticity, Biomechanics, Doppler
ultrasound, Image processing, Computer simulation, Muscles.

INTRODUCTION

The application of tissue motion estimation to ultrasonic
tissue characterization and blood flow imaging is one of
the most promising areas of research in medical imaging
today (Bohs et al. 1993; Jensen 1996; Krouskop et al.
1987; Trahey et al. 1988; Tristam et al. 1986). This is
particularly true of sonoelastography, which derives the
elastic properties of soft tissues from measurements of
displacements resulting from an applied perturbation
(Gao et al. 1996). The potential applications of sonoelas-
tography include tumor detection (Gao et al. 1995;
Huang et al. 1992), studies of muscle elasticity (Levin-

son et al. 1995), the investigation of vascular tissue
properties (Ryan et al. 1992), as well as other areas of
clinical investigation (Ce´spedes et al. 1993; O’Donnell et
al. 1994; Ophir et al. 1996; Yamakoshi et al. 1990).

In contrast to frequency domain (Doppler) methods,
time domain tissue motion estimation techniques use
quantitative methods to track the movement of speckle
patterns in B-mode ultrasound scans (Hein and O’Brien
1993). Time domain techniques have been used in a
variety of biomedical applications, including the use of
an optical flow technique to assess local myocardial
deformation (Mailloux et al. 1989), the use of a block
matching algorithm for blood flow assessment (Trahey et
al. 1988) and to derive tissue elasticity information
(Levinson et al. 1994).

Two-dimensional block matching time domain ap-
proaches to speckle tracking have found widespread ap-
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plication because of their inherent simplicity and relative
immunity to noise. In these methods, speckle patterns are
tracked by matching a target block within a search win-
dow in successive image frames. Traditionally, a fixed
size matching block is employed using a single match at
each image point. This is referred to as single-level block
matching (SLBM) to distinguish it from the multilevel
approach proposed here.

One of the most significant drawbacks inherent in
all methods of speckle tracking is the loss of motion
information due to speckle decorrelation. Ultrasonic
speckle patterns arise from the constructive and destruc-
tive interference of coherent echo signals (Wagner et al.
1983). Speckle pattern decorrelation can be induced by
out-of-plane motion, nonuniform motion of subresolu-
tion scatterers, nonuniformity of the ultrasound field and
nonrigid tissue deformation (Trahey et al. 1988; Wagner
et al. 1988; Wear et al. 1987). Since speckle tracking
algorithms depend on the stability of the speckle pattern,
they often yield inaccurate motion estimates in regions
where speckle decorrelation is high.

In a previous experiment attempting to quantify the
decorrelation of speckle patterns, the rate of speckle
decorrelation was determined from the cross-covariance
curves between ultrasound B-scans of a soft tissue-mim-
icking phantom with translational movement of the
transducer (Ramamurthy and Trahey 1991). It was re-
ported that the correlation coefficient fell to 0.82 for
lateral translations of 2.0 mm and 0.94 for axial transla-
tions of 2.0 mm. The correlation curve fell even more
sharply with increasing translations. These results, how-
ever, were for rigid body motion. Sonoelastography, on
the other hand, relies on the nonrigid deformation of soft
tissues (Ophir et al. 1996). It is anticipated that speckle
decorrelation would be even greater for the case of
nonrigid tissue motion.

To obtain good estimates of the motion field, a large
matching block is desirable to increase the uniqueness of
each data block and to align the local data of weak or
homogeneous speckle patterns to those of strong or
structural speckle patterns. The gain in accuracy, how-
ever, is usually at the expense of spatial resolution. For
this reason, block matching algorithms using a large
matching block often fail to resolve nonrigid or highly
varying motion fields. Indeed, one of the underlying
assumptions of block matching is that all tissue elements
within the matching block have identical motion vectors,
an assumption that is often violated in using a large
matching block when nonrigid or rotational motion is
involved. By using a smaller size matching block, block
matching algorithms perform better in resolving highly
varying motion fields and avoid the problem of nonuni-
form motion vectors, often at the expense of increased

susceptibility to noise and speckle decorrelation-related
tracking errors.

One of the goals of this article is to address the
inherent trade-off between speckle tracking accuracy and
spatial resolution based on the selection of block size by
adapting a multilevel approach that incorporates the ad-
vantages of both large and small matching blocks. In
contrast to single-level block matching, the multilevel
algorithms use a matching block and search window of
variable size. A large block size initially is used to
provide a coarse-resolution estimate of the overall mo-
tion field. Each subsequent level uses a smaller block
size and search window so as to increase the spatial
resolution without sacrificing the noise immunity of the
prior levels. The multilevel method is similar to hierar-
chical schemes used in block matching algorithms for
video coding, in that both provide a global-to-local
framework for motion estimation (Tekalp 1996). They
differ, however, in the use of different schemes of sub-
sampling.

In the multilevel scheme presented here, ultrasound
images are not decimated to construct a multiresolution
pyramid of images because ultrasound images are char-
acterized by discrete speckle patterns rather than by
smooth intensity functions. Excessive filtering and dec-
imation of ultrasound images could transform the
speckle statistics from a Rayleigh distribution to one that
approaches a Gaussian distribution (Ashton 1996). Al-
though the effect of these changes is worthy of further
investigation, that is beyond the scope of this article. In
the multilevel algorithms, only the motion field is esti-
mated based on a multiresolution grid of motion vectors.
This coarse-to-fine approach also improves computa-
tional efficiency through the use of significantly smaller
matching blocks and search windows than would be the
case if large matching blocks and search windows were
used at the finest motion field resolution level. The
improvement in computational efficiency (Chen 1995;
Wang and Shung 1996) is important to applications in
which a dense motion field is required.

Another goal of this work was to devise speckle
tracking algorithms that are robust in the presence of
noise and relatively insensitive to speckle decorrelation.
As speckle decorrelation is signal and motion dependent,
its effects cannot be compensated by simple averaging or
spatial or temporal filtering. The problem of speckle
decorrelation is addressed by usinga priori knowledge
based on the physical properties of tissue motion. The
spatial motion model-based block matching algorithm
combines the multilevel scheme with a smoothness con-
straint based on the assumption that the tissue motion
field is continuous. This assumption is generally valid
when the motion vectors are contained within a single
moving or deforming object. Even at the boundaries of
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tissues with differing properties, motion continuity is still
valid provided that stress also is continuous (nonslip
condition). This smoothness constraint can be imposed
on local neighborhoods of motion estimates to exploit
the connectivity among neighboring motion vectors. The
speckle tracking problem is formulated as a minimiza-
tion of a weighted sum of block matching estimates and
the motion smoothness constraint. Conceptually, this
motion model-based method is similar to regularization
approaches (Poggio et al. 1985) based on variational
principles (Horn and Schunck 1981) or statistical formu-
lations (Konrad and Dubois 1992), in that admissible
solutions of motion estimates are restricted to smooth
functions and that data with weak estimates depend on
data from reliable neighboring sites.

BLOCK MATCHING ALGORITHMS

Single-level block matching
In general block matching algorithms traditionally

used for SLBM, as illustrated in Fig. 1, each target
location in a reference frame is matched to a correspond-
ing location in a comparison frame. The displacement
between the two locations is an estimate of the motion
vector for a given point over a time interval represented
by the two frames. The target locations in the reference
frame are distributed on a grid withm pixels separating
the locations horizontally andn pixels vertically. The
estimated motion vector at each location is defined as the
relative position of the ‘‘best-matched’’M 3 N block
within a predefined search window centered at the same
grid point of the comparison frame relative to the refer-
ence frame. The algorithm searches for all possible lo-
cations within the search window, selecting the best-
matched one based on specific criteria. The grid spacing

M 3 N is ideally chosen to equal the spatial resolution of
the estimated motion field, which is strongly related to,
but not necessarily the same as,M 3 N. We define a
moxel as being a single motion resolution element,
equivalent tom 3 n pixels in the original frame. Since
the correlation cell size of fully developed speckle under
the condition of diffuse scattering is strongly related to
the point spread function of the ultrasound system, the
ratio of M andN should ideally be roughly equal to that
of the system point spread function to achieve a sym-
metrical tracking precision in both axial and lateral di-
rections (Trahey et al. 1988).

Matching criteria
The probability that a motion estimate represents

the tissue motion in a two-dimensional image plane is
maximized when the cross-correlation between the
matching blocks in the reference and comparison frames
also is maximized. Since cross-correlation is relatively
computationally intensive, we have chosen to use an
essentially equivalent approach, the sum of squared dif-
ference (SSD) criteria, which is based on minimizing the
sum of the squared difference between pixels in the two
images (Tekalp 1996). The sum of absolute difference
(SAD) criteria used by others is simpler still but, unlike
SSD that penalizes large pixel differences more heavily,
SAD weighs both small and large discrepancies equally
(Bohs et al. 1993; Chen 1995).

The SSD between a block in the reference frame,k,
and a block displaced by a motion vectord(x) in the
comparison frame, assumed to be the next frame in a
sequence,k 1 1, is formulated as:

SSD5 O
xeB

[fk (x) 2 fk 1 1 (x 1 d(x))]2, (1)

where f denotes the pixel intensity andx the position
vector within the matching blockB. The estimated mo-
tion vectord̂(x) is then given asd(x)|SSDmin

for all possible
locations within the search window.

Multilevel block matching
In basic multilevel block matching (MLBM), a

coarse-to-fine approach is used in the selection of the
sizes of matching blocks, search windows and moxels.
For a multilevel scheme consisting ofLmax levels, if L
denotes the number of the level,L 5 Lmax2 1 represents
the top level andL 5 0, the bottom level. At each level,
the algorithm searches target locations spaced 2Lm0 3
2Ln0 pixels apart using a 2LM0 3 2LN0 pixel matching
block, wherem0, n0, M0, N0, represent the values ofm, n,
M, N, at L 5 0, respectively. Starting from the top level,
in each subsequent level the target location spacing,

Fig. 1. Schematic representation of the general block matching
algorithm.

Ultrasonic speckle tracking algorithms● F. YEUNG et al. 429



block size and search window are reduced by half. The
grid size of estimated motion vectors in the final stage is
represented bym0 andn0. Note that the images are not
subsampled and the image size used in every level is the
same as the original image size.

The center of the search window at each subsequent
level is displaced by the motion vector estimated in the
previous level. Because the moxel grid at a finer level has
a finer resolution than that of the coarser level, the

coarser-resolution motion estimates passed from the pre-
vious level are upsampled to the same resolution as the
current moxel grid by interpolation. This procedure is
repeated until the bottom level is reached. Since the
motion estimates from coarser levels are passed to the
finer levels as offsets of the center of the search win-
dows, the final motion estimate is then the sum of the
vectors found in all stages of the hierarchy, as shown in
Fig. 2.

Spatial motion model-based block matching

Cost function.In spatial motion model-based block
matching (SMBM), a cost function is generated based on
physical criteria. Displacement vectors that violate phys-
ically realistic motion are associated with a correspond-
ingly high cost. The displacement field then is optimized
by minimizing the corresponding overall cost function,
which consists of a weighted sum of SSD and smooth-
ness constraints as defined in the following equation:

H(x, d̂(x)) 5 O
xeV

SSD(x, d̂(x)) 1 bL

3 O
cLeCL

\d̂(xi) 2 d̂(xj)\
2, xi, xj e cd,xi Þ xj , (2)

whereV is the set of all target locations on the moxel
grid, cL denotes a local neighborhood of moxels and
CL is the full set of all neighborhoods of moxels at
resolution levelL. In this equation,cd represents one
possible realization ofcL. The first term is the SSD
error estimate and the second term is a smoothness
constraint that accounts for the connectivity between
neighboring moxels.

Figure 3 illustrates the effective local neighborhood
at two different levels. The cost function represents ana

Fig. 2. Final motion vector estimation in the multilevel algo-
rithm.

Fig. 3. Demonstration of 4-moxel neighborhood at different motion resolution levels.

430 Ultrasound in Medicine and Biology Volume 24, Number 3, 1998



priori motion model because a smooth motion field is
assumed within the tissue region. The parameterbL is a
non-negative function that controls the relative weight of
motion smoothness in the cost function. The weighting
function bL is level dependent because the connectivity
between neighboring moxels varies with the physical
size of the local neighborhood.

Binning.The cost function in eqn (2) is iterative in
nature because each local motion estimate affects the
cost function of its neighbors. We have devised a process
of ‘‘binning’’ to accelerate the convergence of solutions
by selecting a subset, or ‘‘bin,’’ of highly matched loca-
tions within the search window. For example, for an
11 3 11 search window, there are 121 possible locations
for the estimated motion vector. If block matching is
used to select the top 10 (8%) best-matched locations for
the bin and the bin populationd̃(x) is used in the opti-
mization of the cost functionH(x,d̂(x)|d̂(x) ed̃(x)), the
number of calculations is reduced significantly. This
process has three major advantages. By limiting the
number of possible motion vector candidates, optimiza-
tion converges more rapidly. Since only a percentage of
the best-matched locations are used in the cost function,
the effect of the smoothness constraint will be limited,
reducing the blurring effect seen at motion boundaries.
Finally, by using only the moxels with the highest degree
of correlation, the effect of poorly correlated moxels on
the overall cost function will be minimized.

Optimization.Minimization of the cost function can
be accomplished using a deterministic optimization
method similar to the iterated conditional models (ICM)
optimization technique (Geman and Geman 1984). The
cost function is optimized using the following procedure:
(1) Initialize the iteration counterg.
(2) Initialize the bin populationd̃(x).
(3) Initialize the update counteru(x) to one for all target

locations where motion vectors are to be estimated,x
e V.

(4) For each target location, ifu(x) Þ 0 or u(xj) Þ 0,
wherex, xj e cd andx Þ xj, compute the cost function
H(x, d9(x)|d9(x) e d̃(x)) for each possible candidates
in d̃(x).

(5) If d̂(x) Þ d9(x)|Hmin
, set the motion estimated̂(x) to

d9(x)|Hmin
and increment the update counteru(x), oth-

erwise resetu(x) to zero.
(6) Incrementg and terminate ifg $ gmax.
(7) Terminate if¥xeV u(x) 5 0.
(8) Go to the next iteration starting at step 4.

The same procedure is applied for all the moxels at
each level. After the first pass of cost function minimi-
zation, the cost function of a newly updated motion
estimate (u(x) 5 1) or motion estimate with a newly
updated neighbor (u(x) 5 1) must be reminimized. Min-

imization is repeated until no new motion estimates
(¥xeV u(x) 5 0) are obtained or until the number of
iterations has exceeded an arbitrary limit (gmax 5 5 in
our work). Because of the deterministic nature of the
optimization process, iteration converges rapidly. Fur-
thermore, because the binning process limits the total
number of motion vectors estimated in the optimization
process, the additional computational overhead associ-
ated with the SMBM algorithm is insignificant. A flow
diagram illustrating the operation of SMBM imple-
mented using the multilevel scheme is shown in Fig. 4.

EXPERIMENTS AND RESULTS

Evaluation of tracking algorithms
All speckle tracking algorithms were tested using

SUN SPARC 20 (Sun Microsystems, Mountain View,
CA, USA) workstations and the computation time, in
minutes, was recorded as a secondary indicator of the
efficiency of the software implementation of the algo-
rithms. Since this measure depends on the code architec-

Fig. 4. Flow diagram of spatial motion block matching algo-
rithm.
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ture in software implementation, we used the total num-
ber of SSD computationsper image as the primary
indicator of algorithm efficiency. Calculation of total
SSD computations, however, excludes the filtering and
interpolation processes. Still, the ratio of total SSD com-
putations for the different algorithms represents an upper
limit of the gain or loss in efficiency among the algo-
rithms.

Three different measures were used to evaluate the
performance of each of the speckle tracking algorithms.
Mean squared tracking error was used when the actual
motion was known, as was the case for the simulated
motion experiments and the experiments involving trans-
lation in phantoms. In the case of muscle motion in
humans, however, the actual motion field could not be
determined and, hence, peak signal-to-noise ratio
(PSNR) and visual perception of optical flow were used
as indirect measures.

Mean squared tracking error.Mean squared track-
ing error is defined as the mean squared magnitude of the
difference between the estimated motion vectorsd̂(x) and
actual motion vectorsd(x):

«t 5
1

Q O
xeL

\d~ x! 2 d̂~ x!\2, (3)

whereQ is the total number of pixels within the image
andL denotes a set of target locations in the image plane.

Peak signal-to-noise ratio.PSNR is a measure of
how closely the corresponding points described by the
motion vectors between two frames are matched, based
on the mean squared displaced pixel difference (dpd).
The PSNR, in dB, is formulated as:

PSNR5 101og10

2553 255

1

Q O
xeL

[dpd(x, d̂(x))]2

. (4)

The displaced pixel difference is expressed as:

dpd(x, d̂(x)) 5 fk 1 1 (x 1 d(x)) 2 fk (x), (5)

where d̂(x) is the estimated motion vector. The dpd is
essentially the difference between pixel intensities at a
target and its ‘‘matched’’ location in the next frame.

Visual perception of optical flow
Visual perception of optical flow, though subjec-

tive, is often more reliable than mathematical models in
selecting the best algorithm for a given set of images. To
minimize bias, we asked two blinded observers to choose
the vector field image that best matched the observed
motion. The observers each viewed continuous cine-
loops of the time-varying speckle patterns in B-mode
images and compared these to unlabeled motion vector
field images representing the SLBM, MLBM and SMBM
algorithms.

Simple phantom translation experiment
To demonstrate the performance of the algorithms

on actual ultrasonic B-mode scans in a controlled man-
ner, we devised a simple translation experiment using a
gelatin-agar tissue-mimicking phantom. A 7.5-MHz lin-
ear array ultrasound transducer (Quantum, Issaquash,
WA, USA) was clamped rigidly to a 3D precision ma-
nipulator (Velmex, Holcomb, NY, USA) and used to
image the phantom, which was submerged in a water
tank. Movement of the Velmex slider was controlled by
a PC so that the transducer could be translated continu-
ously and precisely in 2 mm (60.1 mm) lateral incre-
ments. The video output of the ultrasound scanner was
connected to another PC with a frame grabber that was
used to capture and store the B-scan sequences. Se-
quences of eight B-scan frames then were transferred to
a workstation for speckle tracking using each of the three
algorithms.

A 100 3 100 pixel rectangular region of interest
(ROI) of the B-scan frame was used for speckle tracking.
A low-pass filter with a 53 5 Gaussian-shaped (vari-
ance5 1.0) kernel was used to remove system noise.
This filter was applied to the image data used in testing

Table 1. Parameters used in motion estimation algorithms.

Level SLBM

MLBM and SMBM

3 2 1 0

Block size 413 25 413 25 213 13 113 7 53 3
Search window 313 31 313 31 153 15 73 7 33 3
Motion field resolution 2:1 16:1 8:1 4:1 2:1
Bin size (SMBM) 13 11 10 5
bL (SMBM) 16 64 256 1024

MLBM 5 multilevel block matching; SLBM5 single-level block matching; SMBM5 spatial motion block matching.
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all of the algorithms to avoid selection bias. Table 1 lists
the parameters used in the speckle tracking algorithms.
Each moxel at the finest level corresponds to two pixels
in each direction, for a ratio of four pixels per moxel. The
smoothness coefficient was increased with decreasing
hierarchical levels to account for increased connectivity
of the motion vectors with decreasing moxel size. Note
that, even though the transducer displacement is in the
lateral direction only, the error of motion estimation was
computed in both the vertical and lateral directions.

Results.Table 2 lists the speckle tracking results for
the simple translation experiment. The SLBM algorithm
using a large matching block performed better than the
MLBM and SMBM algorithms, with a mean squared
tracking error of 0.23 (pixels) compared to 2.28 and 0.97
for MLBM and SMBM, respectively. Since only rigid
motion was involved in this experiment, the assumption
of a uniform local motion field within the matching block
was valid. By using more data in computing each motion
vector, SLBM had a more robust performance than
MLBM, which suffered from inaccurate initial motion
estimates propagated from previous levels and from sen-
sitivity to local variations. Figure 5 shows the perfor-
mance of SLBM with different sizes of matching blocks.
Mean squared tracking errors increased monotonously
with reduced matching block size. The performance of
the motion-model algorithm was very close to that of the
single-level algorithm with a large matching block, be-
cause the motion constraint helped to align motion vec-
tors in regions with poor block correlation from frame to
frame to neighboring sites with more reliable estimates.

The computation time was dramatically different
among the single-level and multilevel algorithms. The
single-level algorithm using the largest matching block
required 144 min while the multilevel and motion model-
based algorithms needed just 5 min each. The ratio
between the computation times is 29. From the total SSD
computations per image, SLBM using a large matching
block required 2.53 109 computations per image
whereas MLBM required 5.73 106 computations per
image. The ratio between these values is 439. Although

the ratio decreased significantly as the SLBM matching
block size was reduced, the tracking error increased
similarly (Fig. 5), demonstrating the inherent trade-off
between the efficiency of computation and the resulting
accuracy with SLBM.

Rotational, compressional and shearing motion fields
Because of the difficulty of accurately controlling

displacements involving deformation of the phantoms,
we instead used computer simulations of rotational, com-
pressional and shearing motion fields. Speckle image
pairs were obtained from envelope-detected data from
radio frequency signals generated by convolving random
scatterers with an ultrasound transducer point spread
function. The speckle pattern satisfied a Rayleigh distri-
bution (Wagner et al. 1983).

Rotational motion was generated by rotating the
speckle images by 5° in a counterclockwise direction. By
rotating the envelope-detected image instead of the scat-
terers, we avoided the speckle motion artifact under
tissue rotation as described by Kallel et al. (1994). For
the compressional motion field, the second image scat-
terers were compressed vertically by 10% and expanded
horizontally by 10%. The shearing motion field was in
the form of pure shear in the horizontal direction, with a
shearing angle of 5°. The ROI of the rotational motion
field was 1953 195 pixels and that of the compressional
and shearing motion fields was 1203 120 pixels. The
speckle tracking algorithms used the same parameters as
shown in the Table 1, with the exception that the block
size in the final level of the multilevel scheme was set to
1 3 1 pixels rather than 53 3 pixels to allow for the
greater spatial variation expected as compared to simple

Fig. 5. Performance of one-level block matching algorithm
(SLBM) with different matching block size.

Table 2. Performance of speckle tracking algorithms for
linear translation.

SLBM MLBM SMBM

Computation time (min) 144 5 5
SSD computations (3106) 2500 5.7 5.7
Tracking error (pixels) 0.23 2.28 0.97
PSNR (dB) 66.72 68.47 66.87

MLBM 5 multilevel block matching; PSNR5 peak signal-to-noise
ratio; SLBM 5 single level block matching; SMBM5 spatial motion
block matching.
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translation. Other parameters were kept the same as the
parameters used in the experiment using the phantom.

Results.The results are listed numerically in Table
3 and shown graphically by the vector diagrams in Figs.
6 and 7, and in the plot in Fig. 8. For the shear motion
field, a one-dimensional plot was used because the align-
ment of motion vectors in a single direction made it
difficult to observe the results. For the rotational motion
field, all three algorithms essentially performed equally
well by objective criteria (the ‘‘Rotation’’ column of
Table 3). Our blinded observers, however, both noted
that SLBM failed to track the motion correctly in the
center region, where the speckle pattern rotated more
rapidly (Fig. 6). With its limited spatial resolution,
SLBM fails to resolve rapid changes in the motion field
at the center. Both observers agreed that SMBM most
accurately represented the motion observed. A similar
observation was made for the simulated compressional
motion field (Fig. 7). In this case, however, the tracking
error associated with SMBM was less than half that with
either SLBM or MLBM (the ‘‘Compression’’ column of
Table 3), as was the case for simulated shear (the
‘‘Shear’’ column of Table 3). The nature of the tracking
error is particularly evident for simulated shear as shown
in Fig. 8, in which the motion along a single line has been
plotted. For SLBM, a stairstep pattern is evident, indi-
cating sharp discontinuities related to the matching block
size. MLBM failed to improve on tracking error, whereas
SMBM provided the smallest degree of mean squared
tracking error.

The effect of decreasing matching block size on the
performance of SLBM is illustrated in Fig. 5. The curves
of mean squared tracking error drop slightly with de-
creasing matching block size in all cases of rotational,
compressional and shearing motion due to the increased
resolving power of smaller matching blocks, but rise
rapidly as the matching block size is further reduced due
to the progressive effect of false matches.

Forearm flexor muscle contraction experiment
To evaluate the three algorithms in living tissue, a

complex muscle motion experiment was performed in a

single subject. Although it was not possible to measure
the true motion of the muscles independently of speckle
tracking, we felt that the data obtained could provide
important insights into the ability of the algorithms to
handle motion fields with a high degree of spatial vari-
ation.

Informed consent was obtained in accordance
with a protocol approved by the research subjects
review board at our institution. A 7-MHz linear array
ultrasound scanner (Acuson, Mountain View, CA,
USA) was used to image the forearm from a single
subject in cross-section at a frame rate of 16 Hz.
Speckle tracking was performed between the first and
fourth frames. A 2003 300 pixel ROI was used, as
shown in Fig. 9. The brightest region at the bottom of
the ROI is the ulna. The region above the bone con-
tains the forearm flexor muscles, blood vessels and
nerves. Two groups of muscles, the flexordigitorum
superficialis (FDS) at the top right and theflexor
digitorum profundus(FDP) in the middle of ROI are
of interest in this experiment. With the wrist supported
in partial flexion so as to relax the wrist flexors, the
subject was asked to bend his middle finger against
resistance so as to contract these two muscles to a
greater degree than the surrounding musculature.

Observation of optical flow.From the optical flow
of speckle patterns in the image sequence, it was ob-
served that the FDP expands outward toward the lower
left and the FDS raised up toward the upper left. The
muscle in the middle left region just above the bone also
seemed to be pushed slightly to the right. There is no
significant motion observed in the muscles in the top left
region. The ‘‘false’’ motion below the bone was due to
the reverberation of echo signals.

Results.The motion fields were estimated accord-
ing to the parameters in Table 1. The same low-pass filter
used in the phantom experiments was applied to the
image data before the motion estimates were obtained.
As seen in Fig. 10 and noted by both blinded observers,
SLBM failed to detect accurately the sophisticated mo-
tion of the muscle tissues. It seems likely that the large

Table 3. Performance of speckle tracking algorithms for simulated rotation, compression and shear.

Rotation Compression Shear

SLBM MLBM SMBM SLBM MLBM SMBM SLBM MLBM SMBM

Computation time (min) 447 16 17 281 10 11 281 10 11
SSD computations (3106) 9300 21.6 21.6 3500 7.9 7.9 3500 7.9 7.9
Tracking error (pixels) 0.74 0.88 0.72 1.32 1.86 0.70 0.32 0.33 0.17
PSNR (dB) 69.53 77.21 72.56 63.14 75.50 70.78 71.12 79.68 75.33

MLBM 5 multilevel block matching; PSNR5 peak signal-to-noise ratio; SLBM5 single-level block matching; SMBM5 spatial
motion block matching; SSD5 sum of squared difference.
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matching block was not able to differentiate multiple
motions within the same block. To illustrate this point,
we halved the matching block size to 213 13. The
column under the heading SMBM* in Table 4 shows the
results. Less computation time (324 min) and SSD com-
putations (3.93 109) were required. Sophisticated mus-
cle movement could be differentiated more easily by
using the smaller matching block, but at the expense of

numerous erroneous motion estimates as noted by both
blinded observers.

Both observers felt that MLBM detected the muscle
tissue motion reasonably well, as seen in Fig. 10, al-
though the motion estimates appeared to be less orderly.
From the motion vector field, it was relatively easy to
differentiate among the muscle groups involved in finger
contraction. The observers chose the SMBM vector plots

Fig. 6. Performance of single-level (SLBM), multilevel (MLBM) and spatial motion (SMBM) algorithms in tracking
simulated rotation.
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as the most representative of the actual motion observed.
The motion field was more physically realistic, with
smooth motion within each muscle group and motion
boundaries between different muscle groups being well
defined.

DISCUSSION

Recovery of motion fields from ultrasonic speckle
images is an ill-posed problem because of speckle deco-

rrelation and noise. Although an incremental tracking
strategy (Chen 1995) has been verified experimentally as
a way to reduce speckle decorrelation, this technique is
limited ultimately by the frame rate of the ultrasound
scanner. The strategy of using a large matching block
with SLBM (Ramamurthy and Trahey 1991) may help to
reduce the number of false matches due to speckle pat-
tern decorrelation but, unfortunately, at the expense of
spatial resolution. We have proposed a different ap-

Fig. 7. Performance of single-level (SLBM), multilevel (MLBM) and spatial motion (SMBM) algorithms in tracking
simulated compression.
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proach to the problem of speckle decorrelation. The
multilevel scheme combines the relative immunity to
noise of SLBM using a large matching block with the
high spatial resolution associated with the use of a
smaller matching block. The addition of a spatial
smoothness constraint in the SMBM model correlates the
motion estimates to their neighboring motion vectors.
Because of this additional constraint, SMBM achieves an
accuracy comparable to that of SLBM with a large
matching block, but without sacrificing spatial resolu-
tion.

The selection of matching block and search window
size is central in block-based speckle tracking algo-
rithms, as these parameters determine the accuracy, res-
olution and computational load of motion estimation.
The trade-off associated with the use of largeversus
small blocks can be illustrated by the plotting of SSD
values at a given location as a function of all possible
motion vectors within the search window. Figure 11
shows one such plot of SSD space based on experimental

data from simple phantom translation. Figures 11a and
11b are surface plots of SSD space based on a search
window of 413 41 using matching block sizes of 313
31 and 113 11, respectively. The troughs in the SSD
space plots represent local minima and the location of the
deepest trough corresponds to the optimum solution to
d(x)uSSDmin

.
In Fig. 11a, it can be noted that there are relatively

few local minima, although the location of the minimum
in the deepest trough is not well defined. This corre-
sponds to the limited spatial resolution associated with
the use of a large matching block. On the other hand, Fig.
11b shows a larger number of better-defined local min-
ima. To limit the number of local minima within the
search area, the search window size can be decreased, but
with a loss in the dynamic range of the motion estimates.
MLBM combines the large dynamic range associated
with the use of a large matching block with the higher
spatial resolution associated with the use of a smaller
matching block. Without the addition of the smoothness

Fig. 8. Performance of single-level (SLBM), multilevel (MLBM) and spatial motion (SMBM) algorithms in tracking
simulated tissue shear. Thex-axis quantity is in pixels.
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constraint, however, the estimate using a small matching
block is often trapped in local minima of the SSD curve
(false matches).

The effects of noise and nonuniform motion are
well illustrated in Fig. 5. The curve from the phantom
translation experiment represents the effect of noise on
tracking error as a function of block size. As the under-
lying motion within the matching block is uniform re-
gardless of the block size, the increase in tracking error
with decreasing block size is representative of increased
sensitivity to noise. With the computer-simulated mo-
tions, on the other hand, tracking error results in spite of
an ideal noise-free environment. With large matching
blocks, false tracking results from the inability to resolve
varying motions within the matching block. With smaller
matching blocks, on the other hand, false matches result
from trapping within local minima in the SSD curve, as
illustrated in Fig. 11b. It could be argued that an ideal
algorithm would search for the optimum block size based
on tracking error curves. As in the muscle experiment,
however, the underlying motion is generally not known
so that it is not possible to generate true tracking error
curves with clinical images. The multilevel scheme ad-
dresses this problem by being adaptive, using a variable
matching block size.

The measure of PSNR [eqn (4)] provides an indirect
measure of the accuracy of motion estimates that does

not requirea priori knowledge of the actual motion field.
Because it is pixel based rather than moxel based, how-
ever, it is susceptible to speckle decorrelation and other
system noise. The motion estimates of an image pair with
a high degree of speckle decorrelation or a high noise
level usually show a low PSNR value. This most likely
explains why our motion estimates from the computer
simulations had the highest PSNR values, whereas esti-
mates based on B-scans of tissue-mimicking phantoms
had lower PSNR values but still higher than those from
muscle. PSNR also measures the sensitivity of an algo-
rithm to local variations in image intensity, whether they
are the result of motion or noise. In our experiments, the
PSNR values associated with SMBM were lower than
those of MLBM but higher than those of SLBM, sug-
gesting moderate spatial resolution.

One potential disadvantage in using a smoothness
constraint is a blurring effect at motion boundaries.
Konrad and Dubois (1992) used line fields to account
for sharp transitions in motion vectors at motion
boundaries, but with a dramatic increase in computa-
tional complexity. Simultaneous motion estimation
and segmentation (Chang et al. 1994) is another ap-
proach, although initial segmentation classes from soft
tissue speckle tracking generally are unavailable. We
have handled the problem of motion blurring by lim-
iting the number of motion vectors used in the opti-

Fig. 9. Region-of-interest (ROI) in a B-scan of forearm flexors. The rectangular box shows a 2003 300 ROI. The flexor
digitorum superficialis (FDS), flexor digitorum profundus (FDP) and ulna are marked.
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mization process. Although the binning process is
neither as sophisticated nor as robust as the line field
and segmentation techniques, it can be implemented
very easily and adds little additional computational
complexity, and may even reduce the overall compu-
tation time because the extra computations used in
ranking motion candidates can be offset by the savings
associated with using a limited subset of the available

motion vectors. Our experiments were not designed to
test sensitivity to motion discontinuities, however, and
further investigation will be needed to test our hypoth-
esis.

The choice of the spatial smoothness coefficients,
bL, in eqn (2), is currently a matter of empirical trials for
different hierarchical levels and is likely related to the
particular tissue investigated and the equipment. Basi-

Fig. 10. Performance of single-level (SLBM), multilevel (MLBM) and spatial motion (SMBM) algorithms in tracking
muscle motion in the forearm.
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cally, a large value of the smoothness coefficient should
be used if a higher degree of speckle decorrelation or
noise level is expected from the image data. As the
physical size of the motion field neighborhood shrinks at
finer hierarchical levels, the connectivity within the
neighborhood is expected to increase and, therefore, the

value of the smoothness coefficient should also be in-
creased. In this article, the values ofbL in the four levels
were chosen initially in increments of 4, 8, 16 and 32.
Since the smoothness constraint represents a summation
of the squared differences of neighboring moxel values,
the values ofbL also should be squared: 16, 64, 256 and
1024. In addition to the values of the smoothness coef-
ficient, the bin size also is important. We have found that
a bin size of 8% of the total number of search locations
works well, as compared to sizes larger and smaller than
this number. We hope to develop more objective criteria
for the selection of smoothness coefficients and bin size
in the near future.

CONCLUSION

We demonstrated that 1) a traditional single-level
block matching speckle tracking algorithm with a large
matching block size provides good accuracy for rigid
motion but fails to resolve highly varying nonrigid mo-
tion fields, and 2) block matching with a reduced match-
ing block size provides good spatial resolution but at the
expense of tracking accuracy. The motion model-based
speckle tracking algorithm presented here combines the
tracking accuracy of a large matching block with the
spatial resolution associated with a smaller matching
block through the use of a hierarchical coarse-to-fine
scheme in conjunction with a physically based smooth-
ness constraint. Our experimental results demonstrate
that the motion model-based algorithm with a multilevel
scheme has a comparable tracking accuracy and better
spatial resolution than block matching using a large
matching block, while saving substantial computation
time.
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